Follow this link to skip to the main content NASA Jet Propulsion Laboratory California Institute of Technology JPL HOME EARTH SOLAR SYSTEM STARS & GALAXIES SCIENCE & TECHNOLOGY BRING THE UNIVERSE TO YOU JPL Email News RSS Mobile Video
JPL Banner
Mars Science Laboratory
Home
FEATURE
03.11.2016

NASA Selects Scientists for Mars Rover Research Projects

Knobbly Textured Sandstone on Mount Sharp, Mars
Knobbly Textured Sandstone on Mount Sharp, Mars
Patches of Martian sandstone visible in the lower-left and upper portions of this view from the Mast Camera (Mastcam) of NASA's Curiosity Mars rover have a knobbly texture due to nodules apparently more resistant to erosion than the host rock in which some are still embedded. Credit: NASA/JPL-Caltech/MSSS

NASA has selected 28 researchers as participating scientists for the Curiosity Mars rover mission, including six newcomers to the rover's science team.

The six new additions work in Alabama, Colorado, Indiana, Pennsylvania, Michigan and Tennessee. Eighty-nine scientists around the world submitted research proposals for using data from Curiosity and becoming participating scientists on the Mars Science Laboratory Project, which built and operates the rover. The 28 selected by NASA are part of a science team that also includes about 120 other members, mainly the principal investigators and co-investigators for the rover's 10 science instruments, plus about 320 science-team collaborators, such as the investigators' associates and students.

Sandstone Nodule Beside 'Naukluft Plateau' on Mount Sharp, Mars
Sandstone Nodule Beside 'Naukluft Plateau' on Mount Sharp, Mars
The nodule in the center of this March 10, 2016, image from the Mars Hand Lens Imager (MAHLI) on NASA's Curiosity Mars rover shows individual grains of sand and (on the right) laminations from the sandstone deposit in which the nodule formed. Credit: NASA/JPL-Caltech/MSSS

An initial group of Mars Science Laboratory participating scientists was chosen before Curiosity's 2012 landing on Mars, and several of those scientists were selected again in the latest round. Participating scientists on the mission play active roles in the day-to-day science operations of Curiosity, involving heavy interaction with rover engineers at NASA's Jet Propulsion Laboratory, Pasadena, California. JPL manages the mission for NASA.

The six participating scientists who are new to the mission are: Barbara Cohen, of NASA Marshall Space Flight Center, Huntsville, Alabama; Christopher Fedo of the University of Tennessee, Knoxville; Raina Gough of the University of Colorado, Boulder; Briony Horgan of Purdue University, West Lafayette, Indiana; Christopher House of Pennsylvania State University, University Park; and Mark Salvatore of the University of Michigan, Dearborn.

Seven other newly selected participating scientists have participated in the Curiosity mission previously in other roles: Christopher Edwards, U.S. Geological Survey, Flagstaff, Arizona; Abigail Fraeman, JPL; Scott Guzewich, Universities Space Research Association, Greenbelt, Maryland; Craig Hardgrove, Arizona State University, Tempe; Amy McAdam, NASA Goddard Space Flight Center, Greenbelt, Maryland; Melissa Rice, Western Washington University, Bellingham; and Kathryn Stack Morgan, JPL.

Fifteen researchers who had been selected previously as Mars Science Laboratory participating scientists were selected again in this round: Raymond Arvidson, Washington University, St. Louis, Missouri; John Bridges, University of Leicester, United Kingdom; Bethany Ehlmann, California Institute of Technology, Pasadena; Jennifer Eigenbrode, NASA Goddard; Kenneth Farley, Caltech; John Grant, Smithsonian Institution, Washington; Jeffrey Johnson, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland; Richard Léveillé, McGill University, Montreal, Quebec, Canada; Kevin Lewis, Johns Hopkins University; Scott McLennan, State University of New York, Stony Brook; Ralph Milliken, Brown University, Providence, Rhode Island; John Moores, York University, Toronto, Ontario, Canada; David Rubin, University of California, Santa Cruz; Mariek Schmidt, Brock University, St. Catherines, Ontario, Canada; Rebecca Williams, Planetary Science Institute, Madison, Wisconsin.

During Curiosity's prime mission, which was completed in 2014, the project met its main goal by finding evidence that ancient Mars offered environmental conditions with all the requirements for supporting microbial life, if any ever existed on Mars. In Curiosity's first extended mission, researchers are using the rover on the lower portion of a layered mountain to study how Mars' ancient environment changed from wet conditions favorable for microbial life to harsher, drier conditions. For more information about Curiosity, visit:

http://mars.nasa.gov/msl


All Related Images
  • This map shows the route driven by NASA's Curiosity Mars rover from where it landed in 2012 to its location in early March 2016, approaching 'Naukluft Plateau.' As the rover continues up Mount Sharp, its science team has been refreshed by a second round of NASA participating-scientist selections.
    New Waypoint, Science Team Newcomers for Curiosity
  • Patches of Martian sandstone visible in the lower-left and upper portions of this view from the Mast Camera (Mastcam) of NASA's Curiosity Mars rover have a knobbly texture due to nodules apparently more resistant to erosion than the host rock in which some are still embedded.
    Knobbly Textured Sandstone on Mount Sharp, Mars (Labeled)
  • Patches of Martian sandstone visible in the lower-left and upper portions of this view from the Mast Camera (Mastcam) of NASA's Curiosity Mars rover have a knobbly texture due to nodules apparently more resistant to erosion than the host rock in which some are still embedded.
    Knobbly Textured Sandstone on Mount Sharp, Mars
  • The nodule in the center of this March 10, 2016, image from the Mars Hand Lens Imager (MAHLI) on NASA's Curiosity Mars rover shows individual grains of sand and (on the right) laminations from the sandstone deposit in which the nodule formed..
    Sandstone Nodule Beside 'Naukluft Plateau' on Mount Sharp, Mars
  • This view shows nodules exposed in sandstone that is part of the Stimson geological unit on Mount Sharp, Mars. The nodules can be seen to consist of grains of sand cemented together.
    Nodules of Cemented Sand Grains Within Martian Sandstone

Guy Webster
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-6278
guy.webster@jpl.nasa.gov


Return to News Archive


USA.gov
PRIVACY     FAQ     SITEMAP     FEEDBACK     IMAGE POLICY