NASA's Mars rover Curiosity acquired this image using its Right Navigation Cameras (Navcams) on Sol 1675 Credit: NASA/JPL-Caltech
Download full image ›

After a 30 meter drive on Sol 1679, we find ourselves near diverse outcrops of the Murray formation. We plan to drive on today across the Murray formation towards Vera Rubin Ridge.

I helped the ENV (Environmental) group to train a new ESTLK (ENV Science Theme Lead and Keeper-of-the-Plan) today. Unlike the GEO group, ENV combines the two roles into one to reduce staffing and because the required duties are lighter in ENV. The ENV plan was relatively straightforward as we are in unrestricted sols, which allow for planning (and driving) every day of the week. This makes time for science, a precious commodity, so ENV frequently cuts back on opportunistic science as long as the regular cadence of recurring ENV observations can be maintained. To stay on the usual cadence, ENV planned a Navcam zenith movie and supra-horizon movie, like the clear-sky image pictured above from Sol 1675. The normal complement of background RAD measurements, hourly REMS observations, plus 8 hour-long blocks of extended REMS observations were included. One long DAN passive observation, along with a post-drive DAN active observation were planned.

Unlike the previous few sols, GEO decided to forgo a touch-and-go (see Sol 1679) to instead sample the large array of outcrops of the Murray formation. Four ChemCam 5x1 rasters, with accompanying Mastcam images, were planned on several targets, including laminated bedrock "Trenton Bridge," bedrock targets "Brown's Brook" and "Beach Cliff," and a pebble named "Norwood Cove." A Mastcam mosaic of the sedimentary structures at "Birch Spring" was also planned. Finally, Navcam requested a single frame to complete the 360 mosaic acquired on Sol 1679. After the drive, which is expected to be about 30 m, a ChemCam AEGIS activity plus Mastcam deck monitoring were included with the ENV activities mentioned above.

About this Blog
These blog updates are provided by self-selected Mars Science Laboratory mission team members who love to share what Curiosity is doing with the public.

Dates of planned rover activities described in these reports are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

Contributors
Tools on the
Curiosity Rover
The Curiosity rover has tools to study clues about past and present environmental conditions on Mars, including whether conditions have ever been favorable for microbial life. The rover carries:

Cameras

Spectrometers

Radiation Detectors

Environmental Sensors

RSS feed icon RSS Feed

Subscribe to: Curiosity's Mission Updates ›