Current Observing Plans MICHAEL S. P. KELLEY (UNIV. MARYLAND) FOR THE COORDINATED INVESTIGATIONS OF COMETS (CIOC) COMMITTEE ## Why collect observing plans? To enhance the scientific output from this rare opportunity by: - Facilitating collaborations, - Identifying missing opportunities, so that we (the community) can fill in the gaps, - Identifying new opportunities. The observing plan calendar will continue be useful after the fact. Provides NASA with a semi-quantifiable metric for campaign success (X observers using Y telescopes over Z days). ### Source: cometcampaign.org Self-reported observing plans from the comet community. - cometcampaign.org/observation-plans solicits input from professional astronomers. - For the amateur observation program, see the talk by Yanamandra-Fisher (4:15 PT). Self-reported = This presentation is incomplete, but it should give a sense of how the community is observing the comet. ### cometcampaign.org We still welcome new observing plan submissions, - Observations that have already occurred are OK! - Related observations of Mars also OK! - Notable omissions: Some Hubble programs, some VLT programs, TRAPPIST, Subaru, Herschel, most Mars spacecraft (see today's talks). - cometcampaign.org/observation-form - Easy to use and most details are voluntary. # cometcampaign.org/observation-form | CometCampaign.Org Planned/Executed Observations Form | |---| | Have plans to observe comet Siding Spring or its effects on Mars? Already have data? Join the Coordinated Investigations of Comets (CIOC) Campaign and submit a form to share your observations with your colleagues. | | The form is about three pages long, and requests some basic information about your goals, instrumentation, and timing. Most fields are optional. You may submit multiple forms. | | More information and a summary of the campaign is at: cometcampaign.org | | Questions or comments should be directed to the CIOC contact form (| | * Required | | Principal Investigator or Observer * Your name | | Contact information * E-mail address (only for us to contact you, and will not be shared publicly) | | Other observers Additional team members | | Science goals Dust, gas, ions, nucleus, Mars, etc. | | Observation status Select multiple boxes, if necessary | | ☐ Planned or proposed | | Awarded or scheduled | | Completed | | Continue » | | CometCampaign.Org Planned/Executed Observations Form | | |--|--| | * Required | | | Telescope / Spacecraft / Instrument Information | | | Telescope / Spacecraft * Name of the observing platform | | | Location Observatory name, MPC code, longitude and latitude, Earth orbit, solar orbit, etc. | | | Instrumentation Specific or generic names of your instruments, e.g., CCD, SpeX, UVES. | | | instrument wavelength
Select the approximate wavelength regimes for all your instruments. | | | □ X-ray | | | □ Far UV □ Near UV | | | Visual / optical | | | Near infrared | | | Mid/far infrared | | | (Sub) Millimeter | | | Radio | | | Other: | | | Data type
Select the approximate data types for all your instruments. | | | Photometry | | | □ Imaging | | | Polarimetry | | | ☐ Spectroscopy | | ### September 2014 Swift/UVOT, Dennis Bodewits NEOWISE, Rachel Stevenson $^{\Gamma_h}$ Earth-based solar elongation angle Δ_{Earth} Δ_{Mars} #### October 2014 ### November 2014 NASA-IRTF/CSHELL, Geronimo Villanueva Kepler/CCD, Mike Kelley Earth-based solar elongation angle Δ_{Earth} Δ_{Mars} | 26 | 27 | 28 | 29 | 30 | 31 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 1 | 2 | 3 | 4 | 5 | 6 | |----|---|----|------|----|-----------------|---|---|--------------------------|----|------|---|---|---|----------|--------------------------|----|-------|----|----|----|--------|--------------------------------|----|------|----|--------|--------------------------|----|--------|----|--------------|----|----|--------|----|---|---|------|---|---|---| | S | M | T | W | T | F | S | S | M | T | W | T | F | S | S | M | T | W | T | F | S | S | M | T | W | T | F | S | S | M | T | W | T | F | S | S | M | T | W | T | F | S | \vdash | 1. | 4 A | U | | | | | 1. | 4 A | U | | | | | 1 | .4 A | U | | | | | 1. | .4 A | U | | | | | 1. | 5 A | U | | | | | 1 | .5 A | U | | | | | | 50 | 0 de | g | | | | | 4 | 3 de | g | | | | | 3 | 37 de | g | | | | | 3 | 1 de | g | | | | 26 deg | | | | | 23 deg | | | | | | | | | | | 1. | 8 A | U | | | | | 2. | 0 A | U | | | | | 2 | .1 A | U | | | 2.2 AU | | | | | 2.3 AU | | | | | 2.3 AU 2.4 A | | | U | | | | | | | | | | $4.5 \times 10^7 \text{ km}$ $7.8 \times 10^7 \text{ kg}$ | | | | ⁷ km | 1 | | 1.1 × 10 ⁸ km | | | | | | | 1.4 × 10 ⁸ km | | | | | | | $1.8 \times 10^{8} \text{ km}$ | | | | | 2.1 × 10 ⁸ km | | | | | | | | | | | | | | | ### February 2015 Swift/UVOT, Dennis Bodewits Γ_h Earth-based solar elongation angle Δ_{Earth} Δ_{Mars} | | 2 |--------------------------|---------------|---|------|---|---|---|--------------------------|--------|---|------|---|---|---|--------|--------------------------------|--------|---|---|---|---|---|--------|--------------------------------|---|---|---|---|--|--| | S | M | T | W | T | F | S | S | M | T | W | T | F | S | S | M | T | W | T | F | S | S | M | T | W | T | F | S | 2.0 AU | | | | | | 2.1 AU | | | | | | | | 2.1 AU | | | | | | | | 2.2 AU | | | | | | | | | | 5 | 4 de | g | | | | | 6 | 1 de | g | | | 67 deg | | | | | | | | 74 deg | | | | | | | | | | 2.4 AU 2.4 AU | | | | | | | 2.3 AU | | | | | | | | 2.3 AU | | | | | | | | | | | | | | | 4.3 × 10 ⁸ km | | | | | | | 4.5 × 10 ⁸ km | | | | | | | | $4.7 \times 10^{8} \text{ km}$ | | | | | | | | $4.8 \times 10^{8} \text{ km}$ | | | | | | | | ATologoop e | | ♦Principal | | | | | | | | | |-----------------------------------|--------------------|--------------------------------|---|------------------------|--|---|------------------------------------|--|-------------------------------|---| | ♦Telescope
or
Spacecraft | \$Instrument | Investigator
or
Observer | Other Observers | ¢Loc. | *Dates | ♦Data Type | ♦Wave. | Observation
Status | Science
Goals | | | Spitzer
Space
Telescope | IRAC | Michael
Kelley | J.Bauer, D.Bodewits, T.Farnham, J
Y.Li, N.Samarasinha, R.Stevenson,
P.Tricarico | Earth orbit | 2014-03-26 | Photometry,
Imaging | Near
infrared | Completed | Dust, gas | | | IRTF | SpeX | Michael
Kelley | Chick Woodward, Silvia Protopapa | Mauna Kea | 2014-01-24 | Spectroscopy | Near
infrared | Completed | water ice | | | Hubble
Space
Telescope | WFC3 | Jian-Yang
Li | Nalin Samarasinha, Mike Kelley, Tony
Farnham, Casey Lisse, Mike A'Hearn,
Alan Delamere, Max Mutchler | Earth orbit | 2013-10-29, 2014-01-21,
2014-03-11 | Photometry,
Imaging | Visual /
optical | Completed | Dust,
nucleus | | | Swift | UVOT | Dennis
Bodewits | Tony Farnham, Mike A'Hearn | Earth orbit | 2013-11-02, 2013-12-28,
2014-02-16, 2014-03-16,
2014-05-28, 2014-07-09,
2014-08-15, 2014-09-14,
2014-10-24, 2015-02-01 | Photometry,
Spectroscopy | Near
UV,
Visual /
optical | Planned or
proposed,
Awarded or
scheduled,
Completed | dust, gas,
evolution | More info and preliminary results on http://www.astro.umd.edu/~dennis/Observations.html | | NASA-IRTF | CSHELL | Geronimo
Villanueva | Michael Mumma, Michael DiSanti,
Boncho Bonev, Robert Novak, Lucas
Paganini, Alain Khayat, Alan Tokunaga,
Karen Magee-Sauer, Erika Gibb | Mauna Kea
[568] | 2014-10-06, 2014-10-07,
2014-10-19, 2014-10-20,
2014-11-03, 2014-11-04 | Imaging,
Spectroscopy | Near
infrared | Awarded or scheduled | Gas | | | Hubble
Space
Telescope | WFC3 | Jian-Yang | Tony Farnham, Mike Kelley, Nalin
Samarasinha, Dennis Bodewits, Mike
A'Hearn, Casey Lisse, Alan Delamere,
Max Mutchler | Earth orbit | 2014-10-19, 2014-10-20 | Photometry,
Imaging | | Awarded or scheduled | Imaging,
dust, gas | | | MAVEN | IUVS | Bruce
Jakosky | Nick Schneider, Ian Stewart, Matteo
Crismani, Mike Combi | Mars Orbit | 2014-10-17 | Imaging,
Spectroscopy | Far UV,
Near
UV | Awarded or scheduled | Gas,
Nucleus,
D/H | | | | ACIS-S,
ACIS-I | Carey
Lisse | Wolk, Christian, Li, Combi, Mutchler | Earth Orbit | 2014-10-19 to 2014-10-20 | Photometry,
Imaging,
Spectroscopy | X-ray,
Far UV | Awarded or scheduled | X-rays,
Solar Wind,
Gas | Detailed observations scheduling still TBD; expect 15 hrs (54 ksec of continuous monitoring). | | NEOWISE | | Rachel
Stevenson | James Bauer | Earth Orbit
[C51] | 2014-07-25 to 2014-07-31,
2014-09-20 to 2014-09-30 | Imaging | Near
infrared | Awarded or scheduled | | | | VLT | NaCo | Bin Yang | Silvia Protopapa, Michael Kelley, Nuno
Peixinho | Paranal
Observatory | 2014-10-05, 2014-10-06 | Spectroscopy | Near
infrared | Awarded or scheduled | dust, ice,
organics | | | Discovery
Channel
Telescope | LMI (CCD) | Matthew
Knight | Dave Schleicher | G37 | 2014-10-18 to 2014-10-19 | Imaging | | Awarded or scheduled | Coma
morphology | 1 hr per night | | Lowell
Observatory
31in | CCD | Matthew
Knight | Dave Schleicher | 688 | 2014-10-10 to 2014-10-24 | Imaging | | Awarded or scheduled | Imaging | 1 hr per night | | | Kron
photometer | Dave
Schleicher | | 688 | 2014-10-17 to 2014-10-20 | Photometry | | Awarded or scheduled | Production rates | | | | | | Mike A'Hearn, Tony Farnham, Daniel | | | | | | | |