MARS
STUDENT IMAGING
PROJECT

Resource Manual

Mars Education Program
Jet Propulsion Laboratory
Arizona State University
Version 2.00
The Mars Student Imaging Project

Written and Developed by:

Keith Watt, M.A., M.S.
Assistant Director
ASU Mars Education Program

Image Processing Curriculum by:
Sara Watt, M.S.
ASU Mars Education Program

Editing by:
Paige Valderrama, M.A.
Assistant Director
ASU Mars Education Program

Sheri Klug, M.S.
Director
ASU Mars Education Program

(C) 2002 ASU Mars Education Program. All rights reserved. This document may be freely distributed for non-commercial use only.
Chapter 1: Mars in Society and Culture

Mars has always played a significant role in human society. The early Greeks noted that unlike the other planets, Mars sometimes seemed to reverse its direction across the sky. This “contrary” motion suggested disorder and anarchy to the Greeks, which, along with its reddish color, led them to name the planet after Ares, their god of war. The Romans later changed the planet’s name to that of their god of war, Mars, and the name has remained ever since.

In the Beginning
Science and our view of the world change only when we are presented with some observation we can’t explain. Early Greek scientist-philosophers believed that Earth was at the center of the Universe and all other celestial bodies revolved around it. Eudoxus, a mathematician who lived in the fourth century B.C., was one of the first people to propose this theory. Eudoxus’ version of the theory was elegantly simple: God is perfect, the only perfect forms are circles, therefore the Sun and planets must move in circles around the Earth. Claudius Ptolemy, a Greek scholar who lived in Alexandria, Egypt, around 140 AD noted that there were some problems with the theory, however. Careful observations showed that the planets did not quite move in perfect circles. Faced with an observation that couldn’t be explained with current theories, Ptolemy modified Eudoxus’ theory and replaced his simple circles with a complicated system of “epicycles”, circles that interlock like gears in a complex machine. Ptolemy’s theory could describe and predict the motions of the planets with an accuracy never before achieved. For almost 1,400 years, until the 16th century, Ptolemy’s theory was considered to be the only correct theory of the Universe. The theory was endorsed by the Catholic Church, which declared any other explanation for the planets’ motions to be heresy and punishable by death.

Ptolemy’s theory only had one problem: it was wrong. One hundred years after Eudoxus, the astronomer Aristarchus watched the shadow of the Earth sweep across the surface of the Moon during a lunar eclipse. His observations showed that the Sun had to be much larger than the Earth, and he felt that it was not likely that a large
Sun would rotate around the smaller Earth. He proposed instead that the Earth revolves around the Sun. He was condemned for heresy because of his theory and all of his writings were rounded up and destroyed. The only reason we know anything about Aristarchus at all is because he is mentioned in the writings of the great mathematician Archimedes. No other scientist was willing to risk the wrath of the Church by mentioning the astronomer’s work. In 1543, nearly 2,000 years later, however, Aristarchus’ theory was taken up by Polish doctor, lawyer, and part-time astronomer Nicolaus Copernicus. Copernicus’ careful observations could not be explained by Ptolemy’s theory. Only if the Sun were at the center of the Solar System could his data make sense. Once again, because of new observations, new science and a new worldview was born.

The New Scientists

Mars played a major role in the controversy. Even Copernicus’ theory could not explain the strange motions of Mars. In 1600 Tycho Brahe had undertaken the careful study of Mars’ orbit. Tycho was perhaps the greatest observational astronomer the world has ever known. We can make more accurate observations today only because we have more accurate instruments. Tycho was world famous, a rock star of science who toured the palaces of kings and other nobility all over Europe. Tycho had given his student, a German mathematician named Johannes Kepler, the task of creating a mathematical description of Mars’ orbit. Tycho, however, was very protective of his data, as are many scientists today. He would throw out an observation over dinner in casual conversation, which Kepler would frantically scrawl down in a notebook that he kept under the table. When Tycho finally died several years later, Kepler broke into Tycho’s safe and stole all of his data. Tycho’s family demanded the documents be returned, and Kepler did so – but only after he had made exact copies of all of the precious data. Kepler, like most of his fellow scientists, felt certain that the planets traveled in perfect circles. After years of struggling with Tycho’s observations of Mars, however, he finally reached the inescapable conclusion that all the work done before him was wrong: the planets move in ellipses, not circles. In addition, he discovered two other laws of planetary motion that he published in 1609. Thanks to Mars, we now understood not only its motion, but the motion of the entire Solar System as well.

In 1634, Kepler published a book called The Dream, in which he described a fanciful flight from the Earth to the
Moon. It was one of the first works of science fiction. Science fiction books have spurred generations of people to wonder about the stars and the planets that travel through the heavens. By the end of the 19th century, however, improved telescopes showed that the Moon was a barren, desolate place, a place where no life could possibly exist. Mars, however, was still a fuzzy disk in even the best telescopes. Science fiction authors, scientists, and the imaginations of the general public turned away from the Moon and looked instead to the Red Planet. In 1877, Italian astronomer Giovanni Schiaparelli observed a series of lines that seemed to cross most of the surface of Mars. In his notes, he called these lines canali, an Italian word that means “channels”. American amateur astronomer Percival Lowell, however, translated the word as “canals”, a very similar meaning, but one that has very different implications: “canals” implies intelligence. Lowell believed that Schiaparelli had discovered the engineering works of a dying Martian society desperately trying to bring water from the Martian icecaps to the equatorial lands. Lowell was so excited by the discovery that he had a state-of-the-art observatory built in Flagstaff, AZ, specifically to study Mars. His writings ignited the imagination of generations of people around the world, including great science fiction authors such as Edgar Rice Burroughs (the Barsoom series of 11 novels), Ray Bradbury (The Martian Chronicles), and H.G. Wells (The War of the Worlds). Wells’ work was made even more popular when Orson Welles (no relation to H.G. Wells) and his Mercury Theater on the Air performed the most famous radio play in American history. To celebrate Halloween of 1938, Welles adapted The War of the Worlds, a tale of a Martian invasion of the Earth, into a radio broadcast. Story events were presented as “news broadcasts” reporting New York City in flames and unstoppable aliens destroying everything in their paths. Millions of people, who tuned in to the play late, thought the broadcasts were real and fled their homes in terror of the “invasion”. Most had taken to the streets in panic and never heard the play’s end and Welles’ wish for them to have a happy Halloween. NBC issued a public apology the next day; Welles became one of Hollywood’s most successful actors. Mars, and the possibility of life there, was so firmly ingrained in the minds of the public that no one questioned that the events of that night might not have actually been real. Mars has always had this power over us.

Today scientists know that Mars in its current form probably cannot support life as we know it. Spacecraft sent to
Mars have found no trace of Lowell’s "canals" or of his dying civilization. But was Mars always as it is now? Data returned from our Mars spacecraft show us that it almost certainly was not. At some time in the past, Mars was much warmer and wetter than it is today. What happened to Mars? Did it once have life? Where did all the water on Mars go? Could Earth also change as Mars has? These are just a few of the questions scientists hope to answer, important questions that you will also help to answer as you begin your exploration in the Mars Student Imaging Project.
The Mars Race
On October 4, 1957, the Soviet Union launched Sputnik 1, the first man-made object into space. In doing so, they did more than launch a spacecraft, they launched a race that would ultimately end with the United States landing a total of 12 astronauts on the surface of the Moon. While many people are familiar with the Moon Race, not many people realize that there was a “Mars Race” as well. In 1960, the Soviet Union attempted to launch two robotic space probes to Mars. Both exploded at launch. In 1962, however, they successfully launched their Mars 1 probe and put it on course for the Red Planet. All seemed to be going well until the spacecraft was about halfway to Mars. Suddenly, all contact with the probe was lost. No one has ever determined what happened to the probe, but its loss gave the American team another chance to be the first to Mars.

Thrilled with the success of Mariner 2, the first unmanned mission to Venus, NASA began its program of Mars exploration, hoping to be the first country to explore Mars as well. Approximately every two years the planets are in just the right position for an Earth-Mars trip that requires the least amount of fuel. In 1964, NASA prepared to launch Mariner 3 and Mari-
ner 4 to Mars. During the launch of Mariner 3, the spacecraft’s protective launch shroud collapsed, destroying the spacecraft. With only three weeks remaining in the low-fuel launch window, NASA engineers scrambled to get Mariner 4 ready to take the place of its sister spacecraft. On November 28, 1964, Mariner 4 launched successfully and put onto the path to Mars. The Soviet Union was not far behind, however. Two days later, on November 30, they launched Zond 2 and put it on course to Mars as well. There was now a literal race to the Red Planet. Two spacecraft were headed to Mars. Which would get there first?

The race stayed close for the first months of the trip, but just as Zond 2 reached the point near where Mars 1 vanished, it too lost all communications. NASA engineers joked about a “Great Galactic Ghoul” that ate Mars spacecraft. They stopped laughing when Mariner 4 began having communications difficulties in the same area. Unlike Zond 2, however, Mariner 4 resolved its difficulties and sailed on to Mars. On July 15, 1965, Mariner 4 became the first spacecraft to visit Mars. The spacecraft returned 21 images that revealed the dry, cratered surface of Mars. Dreams of a garden planet were laid to rest forever, but the data showed that Mars was a fascinating planet in its own right.

Missions to Mars continued with Mariner 6 and Mariner 7 in 1969, both performing flyby missions similar to Mariner 4. Mariner 6 performed flawlessly, but Mariner 7, during its mission, suddenly lost contact with Earth. Engineers were afraid the “ghoul” had returned, but they managed to re-establish contact and determined that a battery on board had exploded during the pass behind the planet. The controllers instructed Mariner 7 to shut down its damaged systems and continue the mission. The two spacecraft together returned 58 pictures of the Martian surface taken from a distance half as far from the planet as Mariner 4. The images, and particularly those from Mariner 7’s flight over the Martian polar caps, once again changed the way we view Mars. Mariner 7 carried an infrared spectrometer on board that was able to analyze the composition of the ice. The spacecraft discovered that the south polar cap of Mars is not water ice at all, but is instead composed almost entirely of frozen carbon dioxide, or “dry ice”.

Zond
Credit: Lunar and Planetary Institute
Mariner 9

NASA engineers quickly realized that in order to carefully study a planet, you have to not only go there, you have to stay. What was needed was a spacecraft that would travel to Mars and place itself in orbit around the planet. The United States was not alone in this assessment. The Soviet Union designed three spacecraft that would travel to Mars during the next launch window. In 1971 they were to join the American Mariner 8 and Mariner 9 probes on the long journey to the Red Planet. The Soviets, however, were attempting to leapfrog the United States: each of their spacecraft contained not only an orbiter, but also a lander designed to descend and send back the first pictures from the surface of Mars. The American Mariner 8 spacecraft died when the second stage of its Atlas-Centaur booster rocket failed to ignite. The Soviet Cosmos 419 made it into space, but never left Earth orbit because the ignition timer for its last stage had been mistakenly set for 1.5 years rather than 1.5 hours after launch. The fleet of spacecraft headed to Mars had been reduced from five to three in just a few weeks.

The three remaining craft, the Soviet Mars 2 and Mars 3 and the American Mariner 9, were all launched in May of 1971. Once again, the race to Mars was on. The race was won by Mariner 9, which was on a slightly faster course than its Soviet counterparts. On November 14, 1971, Mariner 9 became the first artificial satellite of another planet. Mars 2 arrived two weeks later and Mars 3 shortly after that. Unfortunately, when the three spacecraft arrived at Mars, there was nothing much to see. In September of 1971 a dust storm, visible from Earth, began which eventually covered the entire planet. Nothing of this scale had ever been observed on any planetary body. The Soviet Mars 2 dispatched its lander anyway, as it programmed to do, but the lander crashed on the surface, sending back no data. Mars 3's lander fared a bit better, sending back a few seconds of data before it was blown over and destroyed by the raging Martian winds. Still, the Soviet Union had become the first nation to land a spacecraft on another planet – even if it didn’t do much once it got there. The Soviet orbiters snapped featureless pictures of the dust-enshrouded planet until their batteries died. Nothing could be seen through the dust on any of the images. Mariner 9, however, had been designed with an onboard computer that could be repro-
grammed from Earth. NASA control-
ners instructed the spacecraft to shut
itself down and conserve power until
the storm passed. By December of
1971, the storm was over and NASA
woke up the sleeping spacecraft, which
returned the highest resolution pic-
tures of Mars that had ever been ob-
tained.

Once again, new observations com-
pletely changed everything we thought
we once knew. Observations of Mars
by previous spacecraft had led us to
believe the surface of Mars was a
cratered, dead landscape, not much
different from Mercury or the Moon.
All of those spacecraft, however, had
flown past only the southern hemi-
sphere of Mars. The northern hemi-
sphere of Mars is made up of smooth
plains and lava basins, totally unlike
the cratered south. Mariner 9 also
solved the mystery of the “seasonal
variations” Mars seems to display.
These dark areas on the surface seem
to change location with the seasons
and were thought to be indications of
plant life growing during the warmer
Martian summers. Mariner 9 found
that the dark areas were just huge
areas of dark rock exposed when the
bright red Martian dust was blown
away by surface winds. As the sea-
sons changed, so did the direction of
the winds, uncovering new dark re-
gions. The three previous Mariner
spacecraft sent to Mars had shown no
indication of volcanic activity. Mar-
iner 9 discovered Olympus Mons, the
largest volcano in the Solar System,
and the three Tharsis Montes volca-
noes, each larger than any volcano on
Earth. The spacecraft also discovered
Valles Marineris, the largest canyon
system in the Solar System, formed
when some cataclysmic event caused
the crust of Mars to bulge so much it
cracked. The canyon is so huge, if
placed on the Earth it would extend
from San Francisco to Washington,
D.C. The entire Grand Canyon would
fit in one of its side canyons. Most
significantly, Mariner 9 discovered long
channels that look unmistakably like
dry riverbeds – indicating that Mars
may have once had liquid water. These
and other wonders were returned to
Earth in the 7,329 images sent back
to Earth during the course of Mariner
9’s year-long mission. The spacecraft
ran out of fuel on October 27, 1972,
and went forever silent.

The Viking Missions
NASA missed the next launch window
in 1973 because it was preparing for
an even more ambitious mission: a
large-scale lander that would carry a

Viking orbiter
Credit: NASA/JPL
complete laboratory to the surface of Mars. The Soviet Union was not idle, however, using the 1973 launch opportunity to send four spacecraft to the Red Planet. None were successful. By 1975, the American *Viking 1* and *Viking 2* spacecraft were launched and headed to Mars. Like their Soviet counterparts, each *Viking* spacecraft carried both an orbiter and a lander. The landers carried no less than 14 different experiments, most of which were designed to detect life on the surface. The trouble was that no two scientists agreed upon a *definition* of life, much less the means to test for it. Both landers touched down safely, *Viking 1* on July 20, 1976, and *Viking 2* on September 3, 1976. The landers immediately began the tests for life that were finally worked out as the best that could be done. The experiments initially caused great excitement when they indicated they might have actually found biological activity in the Martian soil. Later analysis of the results, however, indicated that the excitement was misplaced. Today, most scientists believe that the *Viking* experiments did not in fact detect life on Mars. The question still remains, however: even if there is no life on Mars now, did life ever exist there in its past? The question is still unanswered.

With the end of the Apollo lunar program, NASA’s shrinking budget forced it to concentrate on the Shuttle Transportation System, better known as the Space Shuttle. As a result no American spacecraft visited Mars for nearly twenty years. The Soviet Union (which would simply become Russia the following year) launched *Phobos 1* and *2* in 1988 to study the moons of Mars, but the “Great Galactic Ghoul” struck once again: *Phobos 1* was lost en route to Mars just one month after launch. *Phobos 2* arrived near Mars and managed to perform, among other things, important studies of the solar wind near Mars before a computer failure caused controllers to lose contact with the spacecraft just before reaching its destination. Neither mission was counted as a success.
In 1992, the United States decided to return to the Red Planet and renew its studies of this fascinating world. As with the Russian spacecraft, Mars Observer lost contact with Earth a year later just as it was about to enter orbit around Mars. The Mars Observer mission cost nearly one billion dollars. It would be the last of the “old-style” planetary explorers.

Faster, Better, Cheaper

Under the leadership of its new administrator, industrialist Dan Goldin, NASA decided to try a new approach dubbed “faster, better, cheaper”. The idea was to use many, smaller spacecraft, instead of one huge expensive spacecraft. In this way, the loss of one craft would not doom an entire exploratory mission. The first in this series of “Discovery missions” was Mars Pathfinder. In contrast to the billion-dollar Mars Observer mission, Pathfinder was designed, built and launched for only 250 million dollars, one-fourth the cost of Observer. Like Viking, Pathfinder included a lander, but it also included something never before attempted: an independent rover, named Sojourner, capable of traveling up to ten meters (32 feet) away from the lander. The mission tested a number of new technologies. Instead of using a Viking-style retrorocket, the Pathfinder lander was encased in four large six-chambered air bags. Upon entering the Martian atmosphere, the lander parachuted most of the way to the surface, then deployed and inflated its air bags for landing. The spacecraft bounced 15 to 20 times, sometimes as high as 50 feet. The landing went exactly as planned. On July 4, 1997, Pathfinder opened its landing petals, and began its science mission while sending the Sojourner rover on its way. The mission was a complete success. The lander returned over 16,500 images, some in 3D. The rover returned over 550 images but, more importantly, sent back over 15 chemical analyses of rocks and soil, as well as data on Martian winds and weather. On September 27, 1997, the Pathfinder lander, now called Sagan Memorial Station, failed to answer a routine status check. Controllers tried for several months to reach the silent craft, but finally gave up on March 10, 1998, officially ending one of the most successful Mars missions in history.

Although launched a month earlier than Mars Pathfinder, an orbiter called Mars Global Surveyor actually arrived at Mars after Pathfinder. Mars Global Surveyor was designed to use a tech-

![Pathfinder Lander and Rover](Credit: NASA/JPL)
nique called “aerobraking”, in which the spacecraft dips into the Martian atmosphere to slow down and place itself in Mars orbit. Aerobraking is a delicate maneuver. If the spacecraft enters too low into the atmosphere, it will burn up. The spacecraft spent almost a year and half slowly modifying its orbit around Mars until it was in a nearly circular polar orbit. This orbit would allow Global Surveyor to image virtually the entire planet during the course of its two-year science mission, which began in March of 1999. Like Pathfinder, Global Surveyor has been a phenomenal success, returning more data about the Martian surface and atmosphere than all previous Mars missions combined. The spacecraft carried not only a camera (the Mars Orbiter Camera, or MOC), it also carried an infrared spectrometer (the Thermal Emission Spectrometer, or TES) designed to search for minerals and measure the temperature of Mars, as well a laser altimeter (the Mars Orbiter Laser Altimeter, or MOLA) which provided the first accurate measurement of the topography – terrain heights – of Mars. The spacecraft completed its primary mapping mission on January 31, 2001, but was in such good health, mission managers decided to extend the mission and to continue gathering data. It was fortunate that they did so, as on June 15, 2001, Global Surveyor scientists detected the beginnings of what would become the largest global dust storm since the Mariner 9 mission almost exactly thirty years prior.

Flush from the successes of Mars Pathfinder and Global Surveyor, NASA commissioned two more spacecraft for the 1998-99 launch window. Mars Climate Orbiter was to function as a Martian weather satellite and as a communications relay satellite for the other craft, Mars Polar Lander. Polar Lander was to land near the south polar ice cap of Mars and dig under the surface in search of water ice. It also carried two "penetrators", called Deep Space 2 (Deep Space 1 was a probe designed to study comets using an experimental ion propulsion unit). Unfortunately,
Climate Orbiter suffered from human-caused failure, similar to that which struck the Soviet Cosmos 419 in 1971. Navigation parameters were fed to the spacecraft in English units, when the program was designed to use metric units. The spacecraft disappeared behind Mars on September 23, 1999, and never reappeared. The fate of Polar Lander is still unknown. The spacecraft seemed to be functioning normally as it entered the Martian atmosphere, but no signal from the surface was ever received. Theories include that Polar Lander burned up on entry, crashed into the surface, or perhaps it simply landed in rough terrain and was unable to point its antenna at Earth. This last theory is particularly ironic: the spacecraft could have been completely healthy, it just needed someone to kick it back upright. Strangely, though, nothing was heard from the Deep Space 2 penetrators either, even though they were deployed early in Polar Lander’s descent. We may never know what happened to Mars Polar Lander – at least not until we are able to go there and look at the crash site ourselves.
Chapter 3: Mars in the Solar System

Mars is a world of puzzles. It is both very similar to and very different from our own Earth. Mars is the fourth planet from the Sun and orbits at a distance one and a half times that of Earth’s orbit. As a result, Mars receives much less light and heat from the Sun than the Earth does, so it is much colder. Also, unlike the Earth, Mars has a very thin low-pressure atmosphere which is unable to retain what heat it does receive. Because of the temperatures and pressures on the Martian surface today, water cannot exist in liquid form. Mars today is therefore a dry, frozen desert.

Similarities and Differences
Mars is similar to Earth in a number of important ways. It has an axial tilt of 23.98 degrees, very similar to Earth’s 23.44 degrees. Mars therefore has seasons, just like Earth, with cold winters and warmer summers. Mars’ rotation period, its “day”, is 24 hours, 37 minutes, again almost exactly the same as Earth’s. Like Earth, Mars has ice caps at both poles. It has clouds, winds, weather, dust storms, volcanoes, and channels. For many years, Venus was considered the “twin” of Earth. Unlike Mars, Venus is very similar in size and mass as Earth and therefore has very similar gravity. But Venus is a hothouse, with temperatures soaring to hundreds of degrees centigrade and atmospheric pressures high enough to crush our toughest metals like tin cans. Mars, on the other hand, could one day conceivably be changed to be more like Earth through advanced engineering known as “terraforming”. In many respects, Mars is a much more hospitable environment than Venus, making it an obvious target for our imaginations.

But Mars is very different from Earth as well. Surface temperatures on Mars range from hundreds of degrees centigrade below zero in the winter to nearly freezing (0º C) in the summer. Because Earth’s orbit is nearly circular, our seasons are virtually the same in both hemispheres. Mars travels in a more elliptical orbit around the Sun than does the other planets, so it is 20% closer to the Sun during southern summer than it is in northern summer. This results in very long, relatively warm southern summers and very long, cold northern winters. Mars has an atmospheric pressure less than
seven-tenths of one percent of Earth’s, far too low to sustain most forms of life as we know it. The southern ice cap is made mostly of frozen carbon dioxide ("dry ice"), not water. Much of the surface of Mars is covered with craters much like the Moon. All of these differences make Mars a world unto itself, rather than a “twin” of Earth or another planet.

The northern and southern hemispheres of Mars are very different. In general, the south is very heavily cratered, while the north is made up mainly of smooth dark plains. There are many exceptions to this general rule, for example, Hellas Planitia (planitia are smooth, low plains or basins) lies in the southern hemisphere and, at 3 km below “datum”, is the deepest basin on Mars. The word “datum” is used rather than “sea level”, because, obviously, Mars currently has no seas! The datum is defined as the altitude at which the atmospheric pressure is 6.1 millibars (6.1 thousandths of the sea level pressure on Earth). The planet isn’t spherical either. There is a very large bulge in the crust located at around 113° west longitude. This region, called the Tharsis Bulge, is home to the largest volcanoes on Mars – and in the entire Solar System. The southern hemisphere reveals the ancient cratering record of impacts early in the Solar System’s history. On Earth, this record has been virtually erased by the effects of volcanoes, wind, and water. Planets such as Mercury died young, ceasing geological activity not long after the period of major impacts. Mars, however, was geologically active for most of the life of the Solar System – the great volcano Olympus Mons was probably active just thirty million years ago – so has examples of young terrain in the north right alongside the ancient cratered terrain in the south. In many ways, Mars uniquely records the history of the Solar System in its surface features.

Polar Caps
The polar caps of Mars change dramatically over the course of a Martian year (which is almost two Earth years). During each hemisphere’s winter, carbon dioxide freezes out of the atmosphere at the poles to form “dry ice”. This dry ice causes the polar cap in that hemisphere to grow by a substantial amount. As much as one-third of the atmosphere of Mars freezes into dry ice at each pole during winter in its hemisphere. Changes of this magnitude in the atmospheric pressure of the Earth would signal that a storm of
unprecedented power was forming, but on Mars it is just a part of the yearly cycle. In the summer, the temperature rises above the vapor point of carbon dioxide and therefore the dry ice sublimes back into the atmosphere. The polar cap then begins to shrink, though there is always some ice left at the poles. The two poles are not the same, however. The ice that remains at the north pole during the northern hemisphere’s summer is mostly water ice, while the residual ice at the south pole is still mostly carbon dioxide ice. Scientists assume that there is water ice buried below the dry ice at the south pole. *Mars Polar Lander* was intended to resolve this particular question once and for all (but unfortunately did not).

Craters

As with Earth and the Moon, Mars was bombarded with debris left over from the formation of the Solar System. The craters left behind have many of the same properties as those on the Moon: a nearly circular raised rim, steep walls, and a smooth floor. If the debris hit with enough energy to liquefy the surface at impact, a central peak often formed in the center of the crater floor. Ejecta, material blasted into the air from the impact, fell in a blanket that extends outward from the crater. Unlike the Moon, however, ejecta blankets on Mars do not have a perfectly circular form. Many craters have irregular ejecta blankets that seem to indicate that some of the ejecta flowed across the surface outside of the crater rather than simply falling straight back to the surface. Craters of this type are called rampart craters because the ejecta is made up of sheets that have distinct outer ridges, or ramparts.

Another unique type of crater on Mars is the pedestal crater. This type of crater is found largely in the northern hemisphere. Craters of this type seem to sit upon a raised pedestal of ejecta. Some of these craters also show ridges like rampart craters, but in other cases the ridges have been eroded away by wind. In some cases the pedestal crater looks to be situated atop a flat, raised plateau which rises above the surrounding terrain.

Any of these types, including the more “standard” lunar-type crater can be made into an incomplete circle by lava flows covering part of the rim. These flooded craters are particularly common near the Tharsis Montes volcanoes.

![Belz Crater, Chryse Planitia, Mars](credit: NASA)
Wind Features

Although Mars has a very low atmospheric pressure, the surface winds are very fast. Wind effects are responsible for many of the features that are seen on Mars today. Sand dunes, very similar to those seen on Earth, are abundant in the northern hemisphere. These dunes form in broad lines that run perpendicular to the wind direction. By tracking these dunes, we gain some idea of how the Martian winds flow over time. The wind is also responsible for eroding the Martian landscape, often in strange and bizarre shapes. The wind is strong enough to blow the red dust away to expose darker-colored rock below, an effect which, as mentioned in Chapter 2, once convinced scientists that Mars was covered with vegetation.

Volcanoes

Mars has the largest volcanoes in the Solar System. One theory why this is true is that Mars seems to have a much thicker crust than Earth, and so it doesn’t have floating, moving crustal plates. Instead of lots of comparatively small eruptions, as occurs with volcanoes on Earth, the pressure on Mars built up into major eruptions that always occurred in the same places – the weak points in Mars’ stable crust. One of the most significant features influencing the development of volcanoes, however, is the Tharsis Montes bulge. The bulge is the site of Olympus Mons, the largest volcano in the Solar System, as well as the three Tharsis Montes volcanoes, each larger than any volcano on Earth. Olympus Mons is 22 km (13.75 miles) high and 550 km (343.75 miles) in diameter. If placed on the surface of the Earth, it would be two and a half times the height of the tallest mountain on Earth (Mt. Everest at 8.85 km or 5.5 miles) and would cover almost the entire state of Arizona! Numerous other volcanoes dot the region as well. These volcanoes were almost certainly formed from lava upwelling through vents in the fractures created by the bulge. No one really knows what formed the bulge. A number of theories have been proposed, but none have yet been proven. Mars has no magnetic field to speak of, so it probably has no molten, liquid core as the Earth does. Some rocks, however, do show “frozen-in” magnetic field lines, which could be evidence that Mars had a strong magnetic field – and therefore a liquid core – in the past. What happened to the core to cause it to solidify? What formed the Tharsis bulge? These are some of the puzzles that Mars presents to us today.
Canyons
Canyons exist in many places on Mars, but none are as famous as Valles Marineris ("The Valley of the Mariners", named for the American probes sent to Mars). The largest canyon in the Solar System, Valles Marineris is even visible from Earth. The canyon is not actually a single canyon, but is instead a system of interconnecting canyons. Valles Marineris varies in depth, but reaches a maximum over 7 km (4.37 miles). Individual canyons are as much as 200 km (125 miles) wide. The central section of Valles Marineris is made up of three nearly parallel canyons, having a total width of over 700 km (437.5 miles) and nearly 2,400 km (1,500 miles) in length. The total length of the Valles Marineris system is over 4,000 km (2,500 miles). The canyon is divided into three general parts. In addition to the central section, to the west, near the Tharsis Montes, is an extremely complex system of interlocking canyons called Noctis Labyrinthus. The eastern end of the canyon is a region of chaotic terrain that could be the result of huge floods flowing out of the canyon after it was formed. Unlike most canyons on Earth, Valles Marineris was not formed by flowing water. The canyon is another effect of the Tharsis bulge. One theory is that it was formed by a literal ripping apart of the Martian crust during the event that caused the Tharsis bulge. Another theory proposes that the canyon was formed when magma underneath it was drawn out in the eruptions of the Tharsis Montes. Once again, we have many puzzles, but very few answers.

Channels
As mentioned previously, Mars today cannot have liquid water present on its surface. We have ample evidence, however, that Mars did at one time have water flowing across its surface. Much of this evidence is in the form of channels that appear to be the result of water runoff and outflows from flooding. We know some channels were formed by flooding that resulted when large impact craters were formed on the surface. The force of the impact melted the permafrost (a layer of ice that scientists think lies frozen
beneath the Martian surface) and caused the resulting water to flow violently away from the crater. This water eventually refroze or evaporated into the atmosphere. In addition to water-created channels, channels could also have been formed by flowing lava. Channels formed by water and channels formed by lava have very different appearances. The characteristics of the channel (its walls, its floors, whether or not it has tributaries, etc.) also tell us something about how much water was present and how fast it was flowing. The questions of what happened to the water on Mars and what the surface of Mars was like when water flowed across it are the central questions facing Mars scientists today. Our experience on Earth has been that where there is water, there is life. Is the same thing true on Mars?

Atmosphere
The atmosphere of Mars is very thin, but Mars still has weather! The atmosphere is composed of about 95% carbon dioxide, 2.5% nitrogen, and 1.5% argon. The remaining 1% is mostly oxygen, carbon monoxide, and water vapor. We believe that much of the water on Mars is frozen at the poles and under the ground in a layer called “permafrost”, but some of it actually exists as ice-crystal clouds that float in the atmosphere. These clouds don’t look like the fluffy cumulus clouds we see here on Earth, but they can resemble the thin, wispy cirrus clouds we often see high in our atmosphere. Where different air masses come together, cyclones can form on Mars, just as they do on Earth. The most striking features of the Martian atmosphere, however, are the dust storms, which can grow strong enough to cover the entire planet. In addition to the dust storm of 1971, which blocked Mariner 9’s view of the planet, in 1977 the Viking orbiters observed no fewer than 25 major dust storms, two of which grew to global proportions. In 2001, the Mars Global Surveyor spacecraft was fortunate to witness the formation and growth of the largest dust storm since the 1971 storm. We have learned a great deal about how the surface of Mars and its atmosphere interact as a result of seasonal heating. This is information that we can use here on Earth as we try to understand our weather and its interactions with the surface.
Chapter 4: The 2001 Mars Odyssey Spacecraft

(Note: Much of this material was taken from official NASA sources. The author gratefully acknowledges their assistance!)

2001 Mars Odyssey is an orbiting spacecraft designed to determine the composition of the planet’s surface, to detect water and shallow buried ice, and to study the radiation environment near Mars. The mission will last for at least two Martian years, or almost four Earth years.

Overview
The surface of Mars has long been thought to consist of a mixture of rock, soil and icy material. However, the exact composition of these materials is largely unknown. Odyssey will collect infrared and visible images that will be used to identify the minerals present in the soil and rocks on the surface to study small-scale geologic processes and landing site characteristics. By measuring the amount of hydrogen in the upper meter of soil across the whole planet, the spacecraft will help us understand how much water may be available for future exploration. The spacecraft will additionally give us clues about the planet’s climate history. Furthermore, the orbiter will collect data on the radiation environment to help assess potential risks to any future human explorers. Finally, the spacecraft can act as a communications relay for future Mars landers.

Launch and Interplanetary Cruise Injection
Odyssey’s mission to Mars began at 11:02 a.m. Eastern time on April 7, 2001, as the spacecraft soared into space onboard a Delta II rocket launched from Space Launch Complex 17A at Cape Canaveral Air Station, Florida. Sixty-six seconds after liftoff, the first six solid rocket strap-ons were discarded. The remaining strap-on rocket boosters were then ignited, and when their fuel was expended, were jettisoned. About 4 minutes, 23 seconds after liftoff, the first stage, the lower section of the Delta II booster, stopped firing and was discarded eight seconds later. About six seconds after that, the engine for the second stage (the middle section of the Delta II booster) was ignited. The fairing, or nose-cone enclosure of the launch vehicle, was discarded 4 minutes, 42 seconds after liftoff. The second-stage burn ended about 10 minutes after liftoff.
At this point, the vehicle was in a low-Earth orbit at an altitude of 195 kilometers (120 miles). The vehicle coasted for several minutes, and once it was at the correct point in its orbit, the second stage was restarted for a brief second burn. For stability, small rockets then fired to spin the third stage on a turntable attached to the second stage. The third stage separated and ignited its motor, sending the spacecraft out of Earth orbit. After the final burn, the third stage and the attached spacecraft were despun so that the spacecraft could be separated and placed into its proper cruise orientation. This was accomplished by a set of weights that were reeled out from the side of the spinning vehicle on flexible lines, much as spinning ice skaters slow themselves by extending their arms. Approximately 30 minutes after liftoff, the spacecraft separated from the Delta’s third stage, and the remaining spin was removed using the orbiter’s onboard thrusters. The solar array was deployed so that the Deep Space Network could acquire the signal from the spacecraft. At 11:55 a.m. Eastern time, flight controllers at NASA’s Jet Propulsion Laboratory received the first signal from the spacecraft through the Deep Space Network (DSN) station in Canberra, Australia, indicating that all was well aboard the orbiter.

Interplanetary Cruise
The interplanetary cruise phase is the period of travel from the Earth to Mars and lasts about 200 days. It begins with the first contact with DSN after launch and extends until seven days prior to arriving at Mars. Primary activities during the cruise include checkout of the spacecraft in its cruise configuration, check-out and monitoring of the spacecraft and the science instruments, and navigation activities necessary to determine and correct Odyssey’s flight path to Mars.

Odyssey’s flight path to Mars is called a Type 1 trajectory, which takes the spacecraft less than 180 degrees around the Sun. During the first two months of cruise, only the Deep Space Network station in Canberra was capable of viewing the spacecraft. Late in May, California’s Goldstone station was able to view *Odyssey*, and by early June, the Madrid station was also able to track the spacecraft. The project also added the use of a tracking station in Santiago, Chile, to fill in tracking coverage early in the mission.

The orbiter transmits to Earth using its medium-gain antenna and receives
commands on its low-gain antenna during the early portion of its flight. About 30 days after launch, the orbiter was commanded to receive and transmit through its high-gain antenna. Cruise command sequences are generated and uplinked approximately once every four weeks during one of the regularly scheduled Deep Space Network passes.

The spacecraft determines its orientation in space chiefly via a star camera and a device called an inertial measurement unit. The spacecraft flies with its medium- or high-gain antenna pointed toward the Earth at all times, while keeping the solar panels pointed toward the Sun. The spacecraft’s orientation is controlled by reaction wheels (devices with spinning wheels similar to gyroscopes). These devices are occasionally “desaturated,” meaning that their momentum is unloaded by firing the spacecraft’s thrusters.

During interplanetary cruise, Odyssey was scheduled to fire its thrusters a total of five times to adjust its flight path. The first of these trajectory correction maneuvers (TCM) was scheduled for eight days after launch, and it corrected launch injection errors and adjusted the Mars arrival aim point. It was followed by a second maneuver 90 days after launch.

The remaining three trajectory correction maneuvers were used to direct the spacecraft to the proper aim point for insertion into Mars orbit. These maneuvers were scheduled at 40 days before arrival (September 14), seven days before arrival (October 17) and seven hours before arrival (October 24). The spacecraft communicated with Deep Space Network antennas continuously for 24 hours around all of the trajectory correction maneuvers. Maneuvers were conducted in a “turn-and-burn” mode, in which the spacecraft turned to the desired burn attitude and fired the thrusters. It was not Earth-pointed during the thruster firing, so no communication was expected in this short but critical time period.

Science instruments were powered on, tested and calibrated during cruise. The Thermal Emission Imaging System (THEMIS) took a picture of the Earth/Moon system about 12 days after launch confirming that THEMIS was operating normally. Star calibration imaging was performed 45 days after launch. Two calibration periods for the gamma ray spectrometer were conducted during cruise. Each of the
spectrometer’s three sensors could be operated during the calibration periods depending upon spacecraft power capabilities. The Mars Radiation Environment Experiment (MARIE) was designed to collect radiation data constantly during cruise to help determine what the radiation environment is throughout the journey to Mars.

Mars Orbit Insertion (MOI) and Aerobraking

Odyssey arrived at Mars on October 24, 2001 Universal Time (October 23 in the United States). As it neared its closest point to the planet over the northern hemisphere, the spacecraft fired its 640-newton main engine for 20 minutes, 19 seconds to allow itself to be captured into an elliptical, or looping, orbit around Mars. After capture, *Odyssey* looped around the planet every 18.5 hours.

Aerobraking is the transition from the initial elliptical orbit to the two-hour circular science orbit. It is a technique that slows the spacecraft down by using frictional drag as it flies through the upper part of the planet’s atmosphere. During each of its long, elliptical loops around Mars, the orbiter passed through the upper layers of the atmosphere each time it made its closest approach to the planet. Friction from the atmosphere on the spacecraft and its wing-like solar array caused the spacecraft to lose some of its momentum during each close approach, known as “a drag pass.” As the spacecraft slowed during each close approach, the orbit gradually lowered and circularized.

Following aerobraking walk-out, the final stage of the aerobraking process, the orbiter was in an elliptical orbit with a periapsis (closest point) near a 120 kilometer (75 mile) altitude and an apoapsis (furthest point) near the desired 400 kilometer (249 mile) altitude. Periapsis was near the equator. A maneuver to raise the periapsis was performed to achieve the final 400 kilometer (249 mile) circular science orbit. The transition from aerobraking...
to the beginning of the science orbit required about one week. The high-gain antenna was deployed during this time and the spacecraft and science instruments were checked out.

Mapping Orbit and Communications Relay Phases
The science mission began in February of 2002. The primary science phase will last for 917 Earth days. The science orbit inclination is 93.1 degrees or almost perpendicular to the Martian equator. This is a nearly polar (90 degree inclination) orbit, but the actual poles themselves will not directly pass under the spacecraft. The orbit period will be just under two hours. Successive ground tracks (areas that pass underneath the spacecraft) are separated in longitude by approximately 29.5 degrees and the entire ground track nearly repeats every two sols, or Martian days of 24 hours, 37 minutes.

During the science phase, THEMIS will take multi-spectral thermal-infrared images to make a global map of the minerals on the Martian surface, and will also acquire visible images with a resolution of about 18 meters (59 feet). The Gamma Ray Spectrometer (GRS) will take global measurements during all Martian seasons. The Mars Radiation Environment Experiment (MARIE) will be operated throughout the science phase to collect data on the planet’s radiation environment. Opportunities for science collection will be assigned depending on when conditions are most favorable for specific instruments.

The relay phase begins at the end of the primary science mission in approximately two to five years. During this phase, the orbiter will provide communication support for U.S. and international landers and rovers.

Thermal Emission Imaging System (THEMIS)
By looking at the visible and infrared parts of the electromagnetic spectrum, THEMIS will determine the distribution of minerals on the surface of Mars and help understand how the mineralogy of the planet relates to the landforms. During the Martian day, the sun heats the surface. Surface minerals radiate this heat back to space in characteristic ways that can be identified and mapped by THEMIS. At night, since THEMIS maps heat, the imager will search for active thermal spots and may discover “hot springs” on Mars.

In the infrared spectrum, the instrument uses nine spectral bands to help detect minerals within the Martian terrain. These spectral bands, similar to ranges of colors, serve as spectral “fingerprints” of

![Thermal Emission Imaging System](Credit: Raytheon Santa Barbara Remote Sensing)
particular types of geological materials. Minerals, such as carbonates, silicates, hydroxides, sulfates, hydrothermal silica, oxides and phosphates, all show up as different colors in the infrared spectrum. This multi-spectral method allows researchers to detect, in particular, the presence of minerals that form in water and to understand those minerals in their proper geological context.

Using visible imaging in five spectral bands, the instrument will also take 20-meter (65.6-feet) resolution measurements of the surface to determine the geological record of past liquid environments. More than 15,000 images — each 18x18 kilometers (11x11 miles) — will be acquired for Martian surface studies. These more detailed data sets will be used in conjunction with mineral maps to identify potential landing sites for future Mars missions. The part of the imaging system that takes pictures in the visible light will be able to show objects about the size of a house. This resolution will help fill in the gap between large-scale geological images from the Viking orbiters in the 1970s and the very high-resolution images from the currently orbiting Mars Global Surveyor. The THEMIS investigation is led by Arizona State University in Tempe, AZ.

Gamma Ray Spectrometer (GRS)
The Gamma Ray Spectrometer will measure the abundance and distribution of about 20 primary elements of the periodic table, including silicon, oxygen, iron, magnesium, potassium, aluminum, calcium, sulfur, and carbon. Knowing what elements are at or near the surface will give detailed information about how Mars has changed over time. To determine the elemental makeup of the Martian surface, the experiment uses a gamma ray spectrometer and two neutron detectors. When exposed to cosmic rays (charged particles in space that come from the stars, including our Sun), chemical elements in soils and rocks emit uniquely identifiable signatures of energy in the form of gamma rays. The Gamma Ray Spectrometer looks at these signatures, or energies, coming from the elements present in the Martian soil.

By measuring gamma rays coming from the Martian surface, it is possible to calculate how abundant various elements are and how they are distributed around the planet’s surface. Gamma rays, emitted from atomic nuclei, show up as sharp emission lines on the instrument’s spectrum. While the energy represented in these emissions determines which elements are...
present, the intensity of the spectrum reveals the elements’ concentrations.

By measuring neutrons, it is possible to calculate the abundance of hydrogen on Mars, thus inferring the presence of water. The neutron detectors are sensitive to concentrations of hydrogen in the upper meter of the surface. Like a virtual shovel “digging into” the surface, the spectrometer will allow scientists to peer into this shallow subsurface of Mars and measure the amount of hydrogen that exists there. Since hydrogen is most likely present in the form of water ice, the spectrometer will be able to measure directly the amount of permanent ground ice and how it changes with the seasons. GRS is led by the University of Arizona in Tucson, AZ.

Mars Radiation Environment Experiment (MARIE)

Led by NASA’s Johnson Space Center in Houston, TX, this science investigation is designed to characterize aspects of the radiation environment both on the way to Mars and in the Martian orbit. Since space radiation presents an extreme hazard to crews of interplanetary missions, the experiment will attempt to predict anticipated radiation doses that would be experienced by future astronauts and help determine possible effects of radiation in the Martian environment on human beings.

Space radiation comes from cosmic rays emitted by our local star, the Sun, and from stars beyond our solar system as well. Space radiation can trigger cancer and cause damage to the central nervous system. Similar instruments are flown on the Space Shuttles and on the International Space Station (ISS), but none have ever flown outside of Earth’s protective magnetosphere, which blocks much of this radiation from reaching the surface of our planet.

A spectrometer inside the MARIE instrument will measure the energy from these sources. As the spacecraft orbits Mars, the spectrometer sweeps through the sky and measures the radiation field. The instrument, with a 68-degree field of view, is designed to collect data continuously during Odyssey’s cruise from Earth to Mars and while in Martian orbit.
Chapter 5: An Introduction to THEMIS

Of the three instruments on board 2001 Mars Odyssey, the one you will be using is the Thermal Emission Imaging System (THEMIS, pronounced THEE-mis). THEMIS is the second in a series of ASU instruments which are planned for the exploration of Mars. The first, the Thermal Emission Spectrometer, or TES, flew aboard Mars Global Surveyor. The third, a smaller version of TES called, appropriately enough, “Mini-TES”, will fly aboard the Mars Exploration Rovers (MER) in 2003. All use similar principles to explore the Red Planet.

Seeing the Invisible

THEMIS is actually composed of two instruments, a thermal infrared (IR) camera and a visual (VIS) camera. You experience infrared radiation every day as heat! Each color that we see in a rainbow actually corresponds to a specific wavelength or frequency. Red light has a very long wavelength, while blue light has a very short wavelength. Infrared light has wavelengths even longer than red light – it’s a color “redder than red”, a color so red your eye can’t even see it! The range of all wavelengths, which includes the colors that your eye can see, is called the electromagnetic spectrum. The part of the electromagnetic spectrum that your eye can see is actually a very tiny slice called the visible spectrum. The part of the spectrum that we call infrared ranges from the edge of the visible spectrum to the start of the radio portion of the spectrum. Yes, radio is nothing more than light! It’s just a color of light so far beyond red that your eye can’t perceive it. Within the visible spectrum there is actually an infinite number of colors, not just the seven we usually give names to. The same is true of the infrared part of the spectrum. The THEMIS IR camera has detectors sensitive to nine different wavelengths, or “colors”, of infrared light. Minerals on and just below the surface of Mars receive heat from the Sun and re-radiate that heat back into space. The re-radiated heat – infrared light – contains the “signature”, composed of specific infrared “colors”, that allow THEMIS to detect different minerals. By making maps of the different colors received by the THEMIS IR camera, we can map the minerals on the surface of Mars from orbit.

Both the THEMIS IR and VIS cameras
are high-resolution. This means that they can see small details on the surface of the planet. Each “pixel”, or dot that makes up the image, on the IR camera represents an area of 100 meters (328 feet) on each side. Thus, a football field imaged by THEMIS would take up just a bit more than one “dot” in the image. The VIS camera, on the other hand, can resolve features as small as 18 meters (65.6 feet) on a side. The VIS camera could therefore see things as small as a house – which would appear as a single “dot” in the VIS image. Each VIS image is of a relatively small area, about 18 x 18 km (11 x 11 miles), roughly the size of a small town. The combination of resolution and image size makes the VIS camera an excellent mapping tool. The Mars Student Imaging Project will use the VIS camera.

Mission Planning

Flying a spacecraft to Mars cannot be accomplished without a large staff to support it. In the case of Odyssey, the spacecraft itself is managed by Lockheed Martin Astronautics (LMA) in Denver, CO, under contract to NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, CA. Odyssey carries three science instruments on board, each of which is controlled by a separate team. Each team has its own needs for the spacecraft, and these often conflict with other teams or with the needs of the LMA engineers. Within each instrument team are several science teams, each with different priorities for observations. In addition, orbital factors such as the position of the Sun or Mars’ moons must be taken into account. The mission planner is responsible for looking at the needs of all of these groups and trying to please everyone! In reality this is often an impossible task, but the mission planner tries very hard to make it all fit together.

The Principle Investigator for THEMIS is Dr. Philip Christensen. Dr. Christensen is responsible for the overall management of the THEMIS project and has the ultimate responsibility for the instrument. Dr. Christensen decides what percentage of observations available will be assigned to which science teams. That information is given to THEMIS Mission Planner Kelly Bender along with the requests for observations from the different science teams. Ms. Bender takes these requests and schedules them as best as possible so that Dr. Christensen’s percentages are met and as many of the science teams’ observations are made as possible. She must also consider the needs of the two other instruments on board Odyssey, as well as the needs of the spacecraft engineers at LMA regarding the positioning of the spacecraft. It is not an easy task!

Once the mission planner has scheduled all the observation requests for the upcoming two-week period, she writes a small program that transmits the commands to JPL. JPL “packages” the commands in a format that the spacecraft can read directly, then
passes that information on to LMA in Denver. LMA checks to make sure there are no commands that will harm the spacecraft or other instruments, then passes the commands to the Deep Space Network (DSN), a system of communication dishes spread around the world that maintain communication with Odyssey. DSN then transmits the commands to the spacecraft, which, if all was done correctly, carries out its new instructions. Once the observations are complete, Odyssey transmits its data back to DSN on Earth and back through the pipeline to the mission planner. At this point, THEMIS Data Archivist Kim Murray processes the data into a form that is usable by the science teams and hands the new images over to them. In addition to the two-week lead time required for planning purposes, once the commands are sent from ASU it can take as much as a day before they travel through the communications pipeline and reach Odyssey. The observations can usually be taken in a day, and the results are available on the third day, if all goes well. Sometimes problems with the spacecraft or with the weather on Mars can delay observations for as much as a week or more. Exploring another planet is never a routine job!

Teachers:

It is important that you as the students’ MSIP teacher have a general understanding of the spacecraft and its mission, capabilities, and constraints, as this will help you guide your students to choose the most appropriate questions for their research.