The Cameras on the Mars 2020 Rover

The rover's "eyes" and other "senses"

The rover has several cameras focused on engineering and science tasks. Some help us land on Mars, while others serve as our “eyes” on the surface to drive around. We use others to do scientific observations and aid in the collection of samples.

Descent Imaging Cameras For Landing

Ever wonder what it would be like to have an "astronaut's" view of landing on Mars?

When the Curiosity rover landed on Mars, it recorded the descent and landing with its Mars Descent Imager or "MARDI" camera. The view was extremely valuable to engineers; it helped them understand what happens during one of the riskiest parts of the mission.

This camera shot full-color video of Curiosity's journey through the atmosphere all the way down to the Martian surface. It gave the science team and rover drivers a glimpse of the landing site to aid them in accurately identify Curiosity’s landing spot and plan the rover's first drives.

New Cameras for Landing

For the Mars 2020 rover, the engineering team is adding several cameras and a microphone to document entry, descent and landing in even greater detail. They will shoot full-color video of Mars 2020 throughout its descent to the Martian surface. Some of what the cameras see on the way down will help mission planners decide on the rover's first drives.

These new eyes and ears of the rover are assembled from easily available commercial hardware. The cameras and microphone are being flown as a "discretionary payload," which means it's an optional add-on that will be an asset, but is not required for the mission.

The team expects that the entry, descent and landing cameras will capture better-than-ever recordings of the events that deliver the rover to the surface of the Red Planet.

The Mars 2020 entry, descent and landing camera suite includes:

  • "Up look" cameras to record the parachute's inflation
  • A descent-stage "down look" camera to view the rover from above
  • A rover "up look" camera to see the descent stage in operation as it lowers the rover from the sky crane
  • A rover "down look" camera to view the ground

A First-Person View of Landing on Mars

In addition to providing engineering data, the cameras and microphone can be considered "public engagement payload." They are likely to give us a good and dramatic sense of the ride down to the surface!

Memorable videos depicting Curiosity’s "Seven Minutes of Terror" during its entry, descent and landing on Mars rover went viral online, but used computer-generated animations.

No one has ever seen a parachute opening in the Martian atmosphere, the rover being lowered down to the surface of Mars on a tether from its descent stage, the bridle between the two being cut, and the descent stage flying away after rover touchdown!

  • What happens when the rover lands?
  • How much sand and rock is blown into the atmosphere by the retro rockets?
  • How does the landing system move as the rover nears the surface?
  • How do the wheels and legs respond when the rover finally puts all its weight down on Mars?

These are some of the most informative observations that the cameras can provide for engineers in the business of landing spacecraft on Mars. Mars 2020 will give us all a front-row seat in a Mars landing for the first time in the history of space exploration.

decorative gear graphic

Tech Specs

  • MAIN FUNCTION: Take pictures, looking up and down, during descent through Martian atmosphere.
  • Location: Mounted on the fore-port-side of the rover, pointing toward the ground.

Engineering Cameras

Mars 2020 uses a new generation of engineering cameras that build on the capabilities of past Mars rover cameras. These "enhanced” engineering cameras give much more detailed information, in color, about the terrain around the rover. They have various functions: they measure the ground around the rover for safe driving, check out the status of rover hardware, and support sample-gathering. Some help determine the best way to move closer to scientific targets.

"Enhanced" Engineering Cameras for Driving

The enhanced engineering cameras for driving help human operators on Earth drive the rover more precisely, and better target the movements of the arm, drill and other tools that get close to their targets. A much wider field-of-view gives the cameras a much better view of the rover itself. This is important for checking on the health of various rover parts and measuring changes in the amount of dust and sand that may accumulate on rover surfaces. The new cameras can also take pictures while the rover is moving.

The enhanced engineering cameras share the same camera body, but use different lenses selected for each camera's specific task.

These Mars 2020 navigation camera, or NavCam, views show a pile of rocks taken from a distance of about 15 meters (about 50 feet) in the "Mars Yard" testing area at JPL. The pictures illustrate one way the camera data can be used to reveal the contours of a target from a distance. Such measurements give the rover and its team the knowledge they need to plan precise travel and arm movements.

decorative gear graphic

Tech Specs

  • MAIN FUNCTION: Used for driving around on Mars and for positioning the tools on the robotic arm
  • Location: Various places on the rover
  • Weight: Less than 425 grams (less than a pound)
  • Image Size: 5120 x 3840 pixels
  • Image Resolution: 20 megapixel

Hazard Avoidance Cameras (HazCams):

Mars 2020 carries six newly developed Hazard Detection Cameras, called HazCams: four on the front and two on the rear of the rover body. HazCams detect hazards to the front and back pathways of the rover, such as large rocks, trenches, or sand dunes.

Engineers also use the front HazCams to see where to move the robotic arm to take measurements, photos, and collect rock and soil samples.

When driving, the rover stops frequently to take new stereo images of the path ahead to evaluate potential hazards. The 3D views give Mars 2020 the ability to make its own decisions about where to drive without consulting on every move with the rover team on Earth.

decorative gear graphic

Tech Specs

  • MAIN FUNCTION: Aid in autonomous navigation and obstacle avoidance
  • Location: Mounted at the front and rear of the rover's body, pointing down toward the ground, about 27 inches (68 centimeters) above ground; front: about 6.54 inches between the center of left and right eyes; back: 3.9 inches (10 centimeters), about 31 inches (78 centimeters) above ground level

New Camera to Record Sample Collection


The "CacheCam" is a single camera that looks down at the top of the sample cache. It takes pictures of sampled materials and the sample tubes as they are being prepared for sealing and caching. This helps scientists “watch over” the samples as they are being obtained, and keeps a record of the entire process for each sample collected.

Mars 2020 CacheCam Sample Tube
This is the top-down view into a sample tube is the type of image CacheCam provides to the Mars 2020 team.
Download full image ›
decorative gear graphic

Tech Specs

  • MAIN FUNCTION: To see down into the top of a sample tube after the sample is gathered; to take microscopic pictures of the top of the sample material before the tube is sealed.
  • Location: Inside the rover underbelly, at the top of the sample cache

The Science Cameras


MastCam-Z is a pair of cameras that takes color images and video, three-dimensional stereo images, and has a powerful zoom lens. Like the Mastcam cameras on the Curiosity rover, Mastcam-Z on Mars 2020 consists of two duplicate camera systems mounted on the mast that stands up from the rover deck. The cameras are next to each other and point in the same direction, providing a 3-D view similar to what human eyes would see, only better. They also have a zoom function to see details of faraway targets.


SuperCam fires a laser at mineral targets that are beyond the reach of the rover’s robotic arm, and then analyzes the vaporized rock to reveal its elemental composition. Like the ChemCam on rover Curiosity, SuperCam fires laser pulses at pinpoint areas smaller than 1 millimeter from more than 20 feet (about 7 meters) away. Its camera and spectrometers then examine the rock's chemistry. It seeks organic compounds that could be related to past life on Mars. When the laser hits the rock, it creates plasma, which is an extremely hot gas made of free-floating ions and electrons. An on-board spectrograph records the spectrum of the plasma, which reveals the composition of the material.


PIXL uses X-ray fluorescence to identify chemical elements in target spots as small as a grain of table salt. It has a Micro-Context Camera to provide images of to correlate its elemental composition maps with visible characteristics of the target area.


SHERLOC's main tools are spectrometers and a laser, but it also uses a macro camera to take extreme close-ups of the areas that are studied. This provides context so that scientists can see textures that might help tell the story of the environment in which the rock formed.


The WATSON camera is one of the tools on the "arm" or turret at the end of Curiosity's robotic arm. It is almost identical to the MAHLI hand-lens camera on the Curiosity rover. WATSON captures the larger context images for the very detailed information that SHERLOC collects on Martian mineral targets. WATSON provides views of the fine-scale textures and structures in Martian rocks and the surface layer of rocky debris and dust. Since WATSON can be moved around on the robotic arm, it also provides other images of rover parts and geological targets that can be used by other arm-mounted instruments. For example, it can be pointed at the oxygen-making experiment MOXIE to help monitor how much dust accumulates around the inlet that lets in Martian air for the extraction of oxygen.

A calibration target for WATSON is attached to the front of the rover body. It contains, a metric standardized bar graphic to help calibrate the instrument.