BLOGMARS PERSEVERANCE ROVER


Sometimes Things Get Complicated
Perseverance sizes up Betty’s Rock on Sol 477 (June 23, 2022): This interesting layered rock likely originated from an outcrop above, but its rough surface and sharp angles prevented Perseverance from collecting a core. Instead, we will bump to Skinner Ridge Rock, a nearby target that looks similar to Betty’s Rock but is likely more approachable for sampling.  Credits: NASA/JPL-Caltech. Download image ›

Perseverance has a big job to do while roving across Jezero and exploring the Delta Front, which is campaign #2 of the mission. One of the major goals of this mission (and campaign) is searching for evidence of past life, and we know from studying deltas on Earth that fine-grained clay-rich rocks in these environments are some of the best at preserving ancient biomarkers. Biomarkers, or “molecular fossils,” are complex organic molecules created by life and preserved in rock for up to billions of years for certain molecular classes. Towards this goal, Perseverance is drilling core samples that will eventually be returned to Earth where future scientists can analyze them in advanced laboratories, using instruments and techniques capable of identifying and extracting organics, then characterizing their molecular structures in detail. These analyses can help determine whether any organic molecules contained in Martian delta rocks are biomarkers or abiotic (non-biological) organics. Sample return is one of the most important strategies this mission is using to search for evidence of past life in Jezero!

Perseverance and the science and engineering teams are working together to pick the right rocks to core, using a suite of onboard instruments to understand mineralogy, elemental distributions, and detect whether organic molecules are present. This process helps triage samples and predict which ones are most likely to contain potential biomarkers. However, choosing and collecting samples is often challenging, and there is always a tradeoff between scientific interest and engineering constraints. Sometimes, fragile materials fracture, crack, or even crumble during the abrasion and coring process, and other rocks have tricky shapes and angles that make drilling difficult or impossible.

Last week, the team hoped to sample Betty’s Rock, a layered rock made up of alternating coarse-grained and fine-grained materials. It appears that Betty’s Rock came from the Rocky Top outcrop many meters above, breaking free and landing near the bottom of the delta front at some point in the past. Although this target was intriguing, the team soon found that its jagged layers and awkward shape prevented the rover from safely maneuvering its arm and placing the corer on the target to abrade and drill. However, all is not lost! After looking around the workspace, the team spotted Skinner Ridge Rock, a low-lying rock that looks very similar to Betty’s Rock, but with a much more approachable shape for potential abrasion and coring. We plan to bump the rover over to this target, study its composition, and hopefully collect a sample. This process will take several sols (days on Mars) to complete, but we all have our fingers crossed for success. Exploring Mars can be a lot of work, but it’s called Perseverance for a reason!



About This Blog

These blog updates are provided by self-selected Mars 2020 mission team members who love to share what Perseverance is doing with the public.

Dates of planned rover activities described in these blogs are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

Subscribe via RSS RSS icon


Sign up to Mars Newsletter

Contributors+

  • Mariah Baker
    Planetary Scientist, Smithsonian National Air & Space Museum
    Washington, DC
  • Matthew Brand
    SuperCam/ChemCam Engineer, Los Alamos National LaboratoryLos Alamos National Laboratory
  • Sawyer Brooks
    Docking Systems Engineer, NASA/JPL
    Pasadena, CA
  • Adrian Brown
    Deputy Program Scientist, NASA HQ
    Washington, DC
  • Denise Buckner
    Student Collaborator, University of Florida
    Gainesville, FL
  • Fred Calef III
    Mapping Specialist, NASA/JPL
    Pasadena, CA
  • Alyssa Deardorff
    Systems Engineer, NASA/JPL
    Pasadena, CA
  • Kenneth Farley
    Project Scientist, Caltech
    Pasadena, CA
  • Phylindia Gant
    Mars 2020 Student Collaborator, University of Florida
    Gainesville, FL
  • Brad Garczynski
    Student Collaborator, Purdue University
    West Lafayette, IN
  • Erin Gibbons
    Student Collaborator, McGill University
    Montreal, Canada
  • Michael Hecht
    Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE) Principal Investigator, Massachusetts Institute of Technology
    Westford, MA
  • Louise Jandura
    Chief Engineer for Sampling & Caching, NASA/JPL
    Pasadena, CA
  • Bavani Kathir
    Student Collaborator on Mastcam-Z, Western Washington University
  • Lydia Kivrak
    Student Collaborator, University of Florida
    Gainesville, FL
  • Rachel Kronyak
    Systems Engineer, NASA/JPL
    Pasadena, CA
  • Steven Lee
    Perseverance Deputy Project Manager, NASA/JPL
    Pasadena, CA
  • An Li
    Student Collaborator on PIXL, University of Washington
  • Justin Maki
    Imaging Scientist and Mastcam-Z Deputy Principal Investigator, NASA/JPL
  • Sarah Milkovich
    Assistant Science Manager, NASA/JPL
    Pasadena, CA
  • Eleanor Moreland
    Ph.D. Student, Rice University
    Houston, Texas
  • Matt Muszynski
    Vehicle Systems Engineer, NASA/JPL
    Pasadena, CA
  • Claire Newman
    Atmospheric Scientist, Aeolis Research
    Altadena, CA
  • Avi Okon
    Sampling Operations Deputy Lead, NASA/JPL
    Pasadena, CA
  • Pegah Pashai
    Vehicle Systems Engineer Lead, NASA/JPL
    Pasadena, CA
  • David Pedersen
    Co-Investigator, PIXL Instrument, Technical University of Denmark (DTU)
    Copenhagen, Denmark
  • Eleni Ravanis
    Student Collaborator, University of Hawaiʻi at Mānoa
    Honolulu, HI
  • Kathryn Stack
    Deputy Project Scientist, NASA/JPL
    Pasadena, CA
  • Vivian Sun
    Science Operations Systems Engineer, Staff Scientist, NASA/JPL
    Pasadena, CA
  • Iona (Brockie) Tirona
    Sampling Engineer, NASA/JPL
    Pasadena, CA
  • Jennifer Trosper
    Project Manager, NASA/JPL
    Pasadena, CA
  • Vandi Verma
    Chief Engineer for Robotic Operations, NASA/JPL
    Pasadena, CA
  • Rick Welch
    Deputy Project Manager, NASA/JPL
    Pasadena, CA
  • Roger Wiens
    Principal Investigator, SuperCam / Co-Investigator, SHERLOC instrument, Purdue University
    West Lafayette, IN

Tools on the Perseverance Rover+

The Perseverance rover has tools to study the history of its landing site, seek signs of ancient life, collect rock and soil samples, and help prepare for human exploration of Mars. The rover carries:


CAMERAS & SPECTROMETERS
GROUND-PENETRATING RADAR
ENVIRONMENTAL SENSORS
TECHNOLOGY DEMO
SAMPLE COLLECTION

Where is the Rover?

Image of a rover pin-point at Perseverance's location on Mars, Jezero Crater

View Map ›