Everything is Dust in the Wind

Perseverance Captures a Gust of Martian Dust: This series of images from a navigation camera aboard NASA’s Perseverance rover shows a gust of wind sweeping dust across the Martian plain beyond the rover’s tracks on June 18, 2021 (the 117th sol, or Martian day, of the mission).

Credits: NASA/JPL-Caltech. Download image ›

Well, not quite. But for scientists like me, who study atmospheric and aeolian (wind-driven) processes, wind-blown dust is extremely important to understand on Mars. Because the Martian atmosphere is so thin, adding even a small amount of dust greatly increases the amount of sunlight absorbed, which greatly affects temperature, which in turn affects the entire atmospheric circulation. Partly because there are no oceans, and partly because of the strong positive feedbacks between dust lifting and circulation strength, global-scale dust storms can develop on Mars. These storms can block out the sun for weeks and cause huge changes to atmospheric conditions, making it risky to try to land on the surface. Dust is also a risk to optics, machinery, and potentially human physiology. 

All of which is why Perseverance carries instruments that are particularly well-suited for observing dust activity and linking it to other environmental conditions, such as winds and surface properties. The Mars Environmental Monitoring Station (MEDA) includes a suite of sensors that can track the passage of dust clouds or dust devils (dusty vortices) around and over the rover. MEDA also includes sensors that can instantly detect the change in brightness when dust is removed from the surface, which we can link to simultaneous MEDA measurements of winds and pressure drops (indicating the passage of a vortex) to learn how that dust was raised from the surface. Perseverance also carries the Navcam and Mastcam-Z cameras, which we use to look for dusty phenomena in the region around us. These and other observations are providing us with valuable information on how winds, vortex activity, and dust lifting vary with season and location inside Jezero crater. For example, while we’ve mostly observed dust lifting linked to vortices, Navcam has also imaged several large dust lifting events driven by strong winds (see image) since we landed at the start of local (northern hemisphere) spring. These “gust lifting” events, which thus far have only been observed during local spring and summer, could potentially raise as much dust as all the dust devils in combination. And after 313 sols on the surface, in late local summer we became the first mission to observe dust lifting and environmental conditions inside the active dust source region of a regional-scale dust storm - something that is helping us understand how storms begin and evolve. 

The largest dust storms typically occur in northern fall and winter on Mars, and after more than 540 sols on the surface we’re still only partway through winter. So we may still experience the effects of another regional- or even global-scale storm before we reach the end of our first year in Jezero crater. In writing this blog, I realized it’s been exactly twenty-five years since I first began studying Martian dust storms, as a brand new graduate student. Little did I know that, some day in the future, I’d be lucky enough to work on a mission that’s discovering so much about them.

About This Blog

These blog updates are provided by self-selected Mars 2020 mission team members who love to share what Perseverance is doing with the public.

Dates of planned rover activities described in these blogs are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

Subscribe via RSS RSS icon

Sign up to Mars Newsletter


  • Mariah Baker
    Planetary Scientist, Smithsonian National Air & Space Museum
    Washington, DC
  • Matthew Brand
    SuperCam/ChemCam Engineer, Los Alamos National LaboratoryLos Alamos National Laboratory
  • Sawyer Brooks
    Docking Systems Engineer, NASA/JPL
    Pasadena, CA
  • Adrian Brown
    Deputy Program Scientist, NASA HQ
    Washington, DC
  • Denise Buckner
    Student Collaborator, University of Florida
    Gainesville, FL
  • Fred Calef III
    Mapping Specialist, NASA/JPL
    Pasadena, CA
  • Stephanie Connell
    SuperCam, PhD Student, Purdue University
    West Lafayette, IN
  • Alyssa Deardorff
    Systems Engineer, NASA/JPL
    Pasadena, CA
  • Kenneth Farley
    Project Scientist, Caltech
    Pasadena, CA
  • Phylindia Gant
    Mars 2020 Student Collaborator, University of Florida
    Gainesville, FL
  • Brad Garczynski
    Student Collaborator, Purdue University
    West Lafayette, IN
  • Erin Gibbons
    Student Collaborator, McGill University
    Montreal, Canada
  • Michael Hecht
    Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE) Principal Investigator, Massachusetts Institute of Technology
    Westford, MA
  • Louise Jandura
    Chief Engineer for Sampling & Caching, NASA/JPL
    Pasadena, CA
  • Elisha Jhoti
    Ph.D. Student, University of California, Los Angeles
    Los Angeles, CA
  • Bavani Kathir
    Student Collaborator on Mastcam-Z, Western Washington University
  • Lydia Kivrak
    Student Collaborator, University of Florida
    Gainesville, FL
  • Athanasios Klidaras
    Ph.D. Student, Purdue University
  • Rachel Kronyak
    Systems Engineer, NASA/JPL
    Pasadena, CA
  • Steven Lee
    Perseverance Deputy Project Manager, NASA/JPL
    Pasadena, CA
  • An Li
    Student Collaborator on PIXL, University of Washington
  • Justin Maki
    Imaging Scientist and Mastcam-Z Deputy Principal Investigator, NASA/JPL
  • Forrest Meyen
    MOXIE Science Team Member, Lunar Outpost
  • Sarah Milkovich
    Assistant Science Manager, NASA/JPL
    Pasadena, CA
  • Eleanor Moreland
    Ph.D. Student, Rice University
    Houston, Texas
  • Asier Munguira
    Ph.D. Student, University of the Basque Country
  • Matt Muszynski
    Vehicle Systems Engineer, NASA/JPL
    Pasadena, CA
  • Claire Newman
    Atmospheric Scientist, Aeolis Research
    Altadena, CA
  • Avi Okon
    Sampling Operations Deputy Lead, NASA/JPL
    Pasadena, CA
  • Pegah Pashai
    Vehicle Systems Engineer Lead, NASA/JPL
    Pasadena, CA
  • David Pedersen
    Co-Investigator, PIXL Instrument, Technical University of Denmark (DTU)
    Copenhagen, Denmark
  • Eleni Ravanis
    Student Collaborator, University of Hawaiʻi at Mānoa
    Honolulu, HI
  • Thirupathi Srinivasan
    Robotic Systems Engineer, NASA/JPL
  • Kathryn Stack
    Deputy Project Scientist, NASA/JPL
    Pasadena, CA
  • Vivian Sun
    Science Operations Systems Engineer, Staff Scientist, NASA/JPL
    Pasadena, CA
  • Iona (Brockie) Tirona
    Sampling Engineer, NASA/JPL
    Pasadena, CA
  • Jennifer Trosper
    Project Manager, NASA/JPL
    Pasadena, CA
  • Vandi Verma
    Chief Engineer for Robotic Operations, NASA/JPL
    Pasadena, CA
  • Rick Welch
    Deputy Project Manager, NASA/JPL
    Pasadena, CA
  • Roger Wiens
    Principal Investigator, SuperCam / Co-Investigator, SHERLOC instrument, Purdue University
    West Lafayette, IN

Tools on the Perseverance Rover+

The Perseverance rover has tools to study the history of its landing site, seek signs of ancient life, collect rock and soil samples, and help prepare for human exploration of Mars. The rover carries:


Where is the Rover?

Image of a rover pin-point at Perseverance's location on Mars, Jezero Crater

View Map ›