BLOGMARS PERSEVERANCE ROVER


Farewell to Our Flying Friend and Closing in on the Crater Rim
Perseverance Spots Ingenuity at Its Final Airfield: NASA’s Perseverance Mars rover captured this mosaic showing the Ingenuity Mars Helicopter at its final airfield on Feb. 4, 2024. The helicopter damaged its rotor blades during landing on its 72nd flight on Jan. 18, 2024. The Ingenuity team has nicknamed the spot where the helicopter completed its final flight “Valinor Hills” after the fictional location in J.R.R. Tolkien’s fantasy novels, which include “The Lord of the Rings” trilogy. Credits: NASA/JPL-Caltech/ASU/MSSS. Download image ›

After 72 flights and 17 kilometers flown, it is finally time for us to say goodbye to the Ingenuity helicopter. It was announced last week that Ingenuity’s mission is now coming to an end after it sustained damage to a rotor blade on its final flight. Ingenuity’s long and remarkably successful journey began three years ago on the floor of Jezero Crater and it will end in Neretva Vallis, a channel that once brought water into an ancient lake. Ingenuity became the first craft to achieve controlled and powered flight on another planet, giving the science team access to landscapes inaccessible to any rover. This week Perseverance drove within ~450 meters of the helicopter, which is likely the closest we will be to our flying companion for the remainder of our mission. We took this opportunity to acquire long distance imagery of Ingenuity with our Mastcam-Z instrument.

While Ingenuity’s mission has reached its conclusion, Perseverance is approaching one of the most exciting parts of its mission so far. Perseverance is continuing to explore the margin unit, an area on the edge of Jezero Crater with strong signatures of carbonate minerals from orbit. Our team made the most of this latest stretch of terrain, taking SuperCam LIBS and VISIR observations of a pitted rock named Porkchop Geyser and capturing Mastcam-Z images of a rubbly outcrop called Muiron Island. As the rover makes its way west, we are diligently preparing for what lies ahead. In orbital imagery of the crater rim we can see huge blocks – so called 'megabreccia' – which are hypothesized to originate from the impact that created Jezero Crater or represent even older rocks ejected from the massive Isidis Basin to our east.

While it is sad to be leaving Ingenuity behind, the future is bright for Perseverance and the science team is in high spirits. Ahead of us lies the mysterious crater rim, which may offer a window into a period of Mars’ history that no rover has ever seen before.



About This Blog

These blog updates are provided by self-selected Mars 2020 mission team members who love to share what Perseverance is doing with the public.

Dates of planned rover activities described in these blogs are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

Subscribe via RSS RSS icon


Sign up to Mars Newsletter

Contributors+

  • Mariah Baker
    Planetary Scientist, Smithsonian National Air & Space Museum
    Washington, DC
  • Matthew Brand
    SuperCam/ChemCam Engineer, Los Alamos National LaboratoryLos Alamos National Laboratory
  • Sawyer Brooks
    Docking Systems Engineer, NASA/JPL
    Pasadena, CA
  • Adrian Brown
    Deputy Program Scientist, NASA HQ
    Washington, DC
  • Denise Buckner
    Student Collaborator, University of Florida
    Gainesville, FL
  • Fred Calef III
    Mapping Specialist, NASA/JPL
    Pasadena, CA
  • Stephanie Connell
    SuperCam, PhD Student, Purdue University
    West Lafayette, IN
  • Alyssa Deardorff
    Systems Engineer, NASA/JPL
    Pasadena, CA
  • Kenneth Farley
    Project Scientist, Caltech
    Pasadena, CA
  • Phylindia Gant
    Mars 2020 Student Collaborator, University of Florida
    Gainesville, FL
  • Brad Garczynski
    Student Collaborator, Purdue University
    West Lafayette, IN
  • Erin Gibbons
    Student Collaborator, McGill University
    Montreal, Canada
  • Michael Hecht
    Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE) Principal Investigator, Massachusetts Institute of Technology
    Westford, MA
  • Louise Jandura
    Chief Engineer for Sampling & Caching, NASA/JPL
    Pasadena, CA
  • Elisha Jhoti
    Ph.D. Student, University of California, Los Angeles
    Los Angeles, CA
  • Bavani Kathir
    Student Collaborator on Mastcam-Z, Western Washington University
  • Lydia Kivrak
    Student Collaborator, University of Florida
    Gainesville, FL
  • Athanasios Klidaras
    Ph.D. Student, Purdue University
  • Rachel Kronyak
    Systems Engineer, NASA/JPL
    Pasadena, CA
  • Steven Lee
    Perseverance Deputy Project Manager, NASA/JPL
    Pasadena, CA
  • An Li
    Student Collaborator on PIXL, University of Washington
  • Justin Maki
    Imaging Scientist and Mastcam-Z Deputy Principal Investigator, NASA/JPL
  • Forrest Meyen
    MOXIE Science Team Member, Lunar Outpost
  • Sarah Milkovich
    Assistant Science Manager, NASA/JPL
    Pasadena, CA
  • Eleanor Moreland
    Ph.D. Student, Rice University
    Houston, Texas
  • Asier Munguira
    Ph.D. Student, University of the Basque Country
  • Matt Muszynski
    Vehicle Systems Engineer, NASA/JPL
    Pasadena, CA
  • Claire Newman
    Atmospheric Scientist, Aeolis Research
    Altadena, CA
  • Avi Okon
    Sampling Operations Deputy Lead, NASA/JPL
    Pasadena, CA
  • Pegah Pashai
    Vehicle Systems Engineer Lead, NASA/JPL
    Pasadena, CA
  • David Pedersen
    Co-Investigator, PIXL Instrument, Technical University of Denmark (DTU)
    Copenhagen, Denmark
  • Eleni Ravanis
    Student Collaborator, University of Hawaiʻi at Mānoa
    Honolulu, HI
  • Thirupathi Srinivasan
    Robotic Systems Engineer, NASA/JPL
  • Kathryn Stack
    Deputy Project Scientist, NASA/JPL
    Pasadena, CA
  • Vivian Sun
    Science Operations Systems Engineer, Staff Scientist, NASA/JPL
    Pasadena, CA
  • Iona (Brockie) Tirona
    Sampling Engineer, NASA/JPL
    Pasadena, CA
  • Jennifer Trosper
    Project Manager, NASA/JPL
    Pasadena, CA
  • Vandi Verma
    Chief Engineer for Robotic Operations, NASA/JPL
    Pasadena, CA
  • Rick Welch
    Deputy Project Manager, NASA/JPL
    Pasadena, CA
  • Roger Wiens
    Principal Investigator, SuperCam / Co-Investigator, SHERLOC instrument, Purdue University
    West Lafayette, IN

Tools on the Perseverance Rover+

The Perseverance rover has tools to study the history of its landing site, seek signs of ancient life, collect rock and soil samples, and help prepare for human exploration of Mars. The rover carries:


CAMERAS & SPECTROMETERS
GROUND-PENETRATING RADAR
ENVIRONMENTAL SENSORS
TECHNOLOGY DEMO
SAMPLE COLLECTION

Where is the Rover?

Image of a rover pin-point at Perseverance's location on Mars, Jezero Crater

View Map ›