Follow this link to skip to the main content NASA Jet Propulsion Laboratory California Institute of Technology JPL HOME EARTH SOLAR SYSTEM STARS & GALAXIES SCIENCE & TECHNOLOGY BRING THE UNIVERSE TO YOU JPL Email News RSS Mobile Video
JPL Banner
Mars Science Laboratory
Home
MISSION

Curiosity Mission Updates

NASA's Mars rover Curiosity acquired this image using its Mast Camera (Mastcam) on Sol 2240 Credit: NASA/JPL-Caltech/MSSS

Mastcam Right image of some of the Highfield drill fines that made it onto the ground over the Thanksgiving holiday.

Curiosity was happy and healthy after the Thanksgiving holiday, but experienced a minor post-holiday hiccup during a test of delivering sample portions to the workspace. The rover's robotic arm tripped a safety limit such that the activity did not quite go to completion. We should be able to easily recover the rest of this activity in our plan tosol. This should set us up to dump the "Highfield" drill fines later this week, so that we can analyze their chemistry and appearance with APXS, ChemCam, MAHLI and Mastcam, and compare these findings with those from the mineralogical and compositional analyses by Curiosity's internal instruments, CheMin and SAM.

As well as recovering the arm activity, we were able to plan a number of science observations to further characterize the bedrock in this workspace, continue our search for meteorites and monitor changes in the wind and sediment movement. ChemCam will analyze the composition of two typical grey bedrock targets, "Kingseat" and "Grampian," as well as a potential meteorite fragment, "Kerrera," identified from Mastcam multispectral images. ChemCam will also revisit the "Little Todday" meteorite target, to look for compositional variation. Mastcam will acquire supporting images of the various ChemCam targets, as well as re-image the "Sand Loch" and "Windyedge" targets for change detection.
We are also acquiring Mastcam imaging of two areas ("Dunecht" and "Lothian") within the nearby, more typical red Jura member of the Vera Rubin Ridge (as opposed to the patchy grey Jura member that we are currently parked on). These will help inform our decision about where to drive to next, and where we may want to attempt our next drill hole. We are ultimately trying to understand why the Vera Rubin Ridge is a ridge and resistant compared to the rest of the Murray formation we have been driving over. Does it represent a change in the environment that the sediments were deposited in, or does it reflect post-depositional changes to the rock?

The plan was rounded out with background REMS, passive DAN and RAD observations. Finally Curiosity and all of us on the team are excited to welcome the latest robotic explorer to the surface of Mars today. Congratulations to JPL and InSight on a successful landing. We look forward to learning about the interior workings of the red planet!

About this Blog
These blog updates are provided by self-selected Mars Science Laboratory mission team members who love to share what Curiosity is doing with the public.

Dates of planned rover activities described in these reports are subject to change due to a variety of factors related to the Martian environment, communication relays and rover status.

Contributors
Tools on the
Curiosity Rover
The Curiosity rover has tools to study clues about past and present environmental conditions on Mars, including whether conditions have ever been favorable for microbial life. The rover carries:

Cameras

Spectrometers

Radiation Detectors

Environmental Sensors

RSS feed icon RSS Feed
Subscribe to: Curiosity's Mission Updates ›
USA.gov
PRIVACY     FAQ     SITEMAP     FEEDBACK     IMAGE POLICY